High-
Performance
Component
Technology

Mission

The High-Performance Components
project develops software component
technology for high-performance paral-
lel scientific computing to address
problems of complexity, re-use, and
interoperability for laboratory simula-
tion software. Our research focuses on
the unique requirements of scientific
computing on parallel machines, such
as fast in-process connections among
components, language interoperability
for scientific languages, and data distri-
bution support for massively parallel
components.

The Need for Component
Technology

Numerical simulations play a vital
role in the DOE’s science mission as a
basic research tool for understanding
fundamental physical processes. As
simulations become increasingly
sophisticated and complex, no single
person—or even single laboratory—
can develop scientific software in
isolation. Instead, physicists, chemists,
mathematicians, and computer scien-
tists concentrate on developing
software in their domain of expertise.
Computational scientists create simula-
tions by combining these individual
software pieces.

Unfortunately, it is often difficult to
share sophisticated software packages
among applications due to differences

University of California

UCRL-TB-145880-Rev.1

Center for Applied Scientific Computing

Figure 1: Component applications are built from component building blocks; components can be
thought of as software “integrated circuits.”

in implementation languages, program-
ming style, or calling interfaces. In the
industrial sector, this problem is solved
through the use of component technol-
ogy. Unfortunately, industry component
solutions are inappropriate for parallel
scientific computing because they do
not support the concept of a “parallel
component” that is required for high-
performance scientific computing.

Scope of Project

We are investigating and developing
component technology in three primary
areas. First, we have developed a soft-
ware tool called Babel that enables
language interoperability among a vari-
ety of scientific programming
languages, including Fortran, C, C++,
Java, and Python. Second, we have
developed a web-based component
repository called Alexandria for deploy-
ing software components. Finally, we
are investigating parallel data redistribu-
tion issues for communication among
distributed components running on dif-
fering numbers of parallel processors.

Our Babel tool addresses language
interoperability issues for high-perfor-
mance parallel scientific software. Its
purpose is to enable the creation,
description, and distribution of lan-
guage-independent software libraries.
Babel uses Interface Definition
Language (IDL) techniques. An IDL

Lug Lawrence

Livermore

describes the calling interface (but not
the implementation) of a particular soft-
ware library. We have designed a
Scientific Interface Definition Language
(SIDL) that addresses the unique needs
of parallel scientific computing. SIDL
supports complex numbers and
dynamic multidimensional arrays as
well as parallel communication direc-
tives that are required for parallel
distributed components. As shown in
Figure 2, Babel uses this SIDL interface
description to generate glue code that
allows a software library implemented
in one supported language to be called
seamlessly from any other supported
language. An important capability of
Babel is that languages may be mixed
together freely; libraries may be written
in any supported language and called
by any other supported language. For
example, an application written in
Python could call a solver library writ-
ten in C, a physics package written in
Fortran or C++, and a visualization
package written in Java.

Babel currently supports Fortran 90,
Fortran 77, C, C++, Python, and Java.
Improving Fortran 90 support is our top
priority this year. We are also research-
ing extensions to SIDL that would add
semantic descriptions for the behavior
of scientific components beginning
with basic precondition and post-con-
dition assertions.

National Laboratory

URL: http://www.lInl.gov/CASC/component

High-Performance Component Technology

F90
package HYPRE {
interface Vector { F77
void axpy(in Vector x, in double a);
double dot(in Vector x);
- | Babel c
interface Matrix { Library tools C++
i Interface
}: in SIDL Python
Java

Figure 2: Babel provides language interoperability using SIDL interface descriptions.

We have also designed and imple-
mented a prototype web-based
repository called Alexandria to encour-
age the distribution and re-use of
scientific software components and
libraries. Alexandria provides a conve-
nient web-based delivery system, and
thus lowers the barrier to adopting
component technology. We work with
the DOE Common Component
Architecture forum to establish com-
mon schema for accessing Alexandria
from component tools developed by
collaborators at other DOE laboratories
and academia.

Finally, we are investigating the
issues associated with parallel data
redistribution among components run-
ning on different parallel machines and
on different numbers of processors.

processors requires data redistribution.

-Palet FAl

For example, a simulation code run-
ning on thousands of processors may
need to communicate mesh data to a
visualization server with a relatively
small number of processors. Although
the data redistribution problem has
been addressed in the past for simple
data types such as multidimensional
arrays, we are investigating general
techniques for the sophisticated data
structures typically found in complex
scientific applications, such as meshes
and sparse matrices.

Common Component
Architecture Forum

We are working closely with mem-
bers of the Common Component
Architecture (CCA) forum (see
http://www.cca-forum.org). The CCA is a
working group of physicists, mathemati-
cians, and computer scientists
developing component technology stan-

Chemistrylntegrator
CvodeComponent

DiffCoeff
DiffCamp_JR
DiffQuants

ICcomponent_JR

RK2_Recursive_Integrator
StatsComp

DiffCaefls

[1
| ©<o<trroe |
-

——
_ aw |
m———

RHSPropPort
Chemistryintegrator

[CEbEEEA: |

ChemRates

PROJECT

Figure 3: CCA component connections in Ccaffeine

dards that address the high-performance
computing needs of the DOE. CCA
members include participants from the
DOE (ANL, LANL, LBNL, LLNL, ORNL,
and SNL) and academia (Indiana
University and the University of Utah).
The CCA is developing a reference
implementation of a component technol-
ogy infrastructure for high-performance
computing. Our Babel tool provides the
underlying language interoperability
technology for the CCA infrastructure.

Technology Demonstrations

We are collaborating with laboratory
research groups to demonstrate compo-
nent technology in scientific libraries
and applications. These collaborations
help us understand the issues involved
in using advanced software technolo-
gies for scientific simulations, and they
demonstrate the applicability of com-
ponent approaches.

In particular, we are working with
the hypre Scalable Linear Solvers team
to integrate Babel language interoper-
ability technology into their solver
library. Our technology will enable the
hypre library, developed using object-
oriented techniques in C, to be called
from scientific applications written in
Fortran 77, Fortran 90, C, C++, Java,
and Python.

The CCA has adopted SIDL as its offi-
cial language for specification, and there
are two implementations of the CCA
specification using Babel language inter-
operability technology. We developed a
prototype CCA framework called Decaf,
and this work has been adopted into
SNUs Ccaffeine, a CCA framework with
a graphical user interface for composing
simulations from a pallet of high-perfor-
mance components.

The High-Performance Components
project is funded by the SciDAC pro-
gram in the DOE Office of Advanced
Scientific Computing Research.

Contact Information:

Additional information about High-
Performance Component Technology
at LLNL is available from our web site
http://www.linl.gov/CASC/components.
You may also contact the team at com-
ponents@linl.gov or Tom Epperly at
tepperly@linl.gov, 925-424-3159.

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

